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Thin-walled structural elements are quite sensitive to corrosion, since even an in- 
significant diminution in their geometric dimensions due to corrosive wear can result in large 
stress and strain changes; therefore, they have been utilized more and more in a whole series 
of engineering areas recently. In this connection, taking account of the influence of cor- 
rosion in strength, stability, and longevity analyses, as well as in optimum design, becomes 
quite important. 

An optimal design problem for reinforced cylindrical shells subjected simultaneously 
to mechanical and chemical destruction is solved in this paper on the basis of experimental 
dependences of corrosive wear [i] and shell theory equations [2]. 

Let us consider a thin-walled cylindrical shell of radius r, length L, compressed by 
an axial load N, hinge-supported at the endfaces and reinforced by stringers and ribs of rec- 
tangular cross section. The characteristics of the isotropic shell material are known: the 
elastic modulus E, the Poisson ratio v, the density p, and the yield point o T. The variable 
parameters are the width and quantity of the stringers and ribs, hs, k, hr, kl; the sheath 
thickness h and its longevity t (the stringer and rib heights are assumed to be b c = %h c, 
b r = %h r to eliminate their local buckling [2]). 

The constraints assuring shell reliability during its exploitation (without taking ac- 
count of the influence of the aggressive medium are: 

strength 

total buckling 

local buckling 

(2nrh ~ khcbc)a T ~ N;  

(2nrh -t- khcbc)a..=E/(t - -  ~ )  ~ N ,  n = O, m = t ,  2 . . . .  ; 

(1) 

(2 )  

(2nrh + khcbc)am~E/(l  - -  ~ )  > / N ,  n = 2, 3 . . . . .  m = i ,  2 . . . .  ( 3 )  

Here m and n are wave-formation parameters in the axial and circumferential directions, re- 
spectively; Omn are critical buckling stresses determined with the discrete nature of the 
reinforcements taken into account by the method elucidated in [3]. 

The minimum of the mean rate of construction mass loss during exploitation is taken as 
target function 

G = (2~rhL + kh~bcL + 2 k ~ r  br nr)p/t --+ min. (4 )  

According to [I], the corrosive destruction process has the form 

dP = f ldt  + / f l a  + / f i r ,  ( 5 )  

where  o i s  t h e  s t r e s s .  T i s  t h e  t e m p e r a t u r e ,  P i s  t h e  c o r r o s i v e  damage p a r a m e t e r ,  and f x ,  
f 2 ,  and f3 a r e  f u n c t i o n s  d e s c r i b i n g  t h e  p r o c e s s  o f  c h a n g e s  i n  t h e  g e o m e t r i c  and e l a s t i c  c h a r -  
a c t e r i s t i c s  o f  t h e  c o n s t r u c t i o n  a s  a f u n c t i o n  o f  t h e  t i m e ,  s t r e s s ,  and t e m p e r a t u r e .  

U s i n g  t h e  a s s u m p t i o n s  i n t r o d u c e d  i n  [4] a b o u t  t h e  n a t u r e  o f  t h e  c h e m i c a l  d e s t r u c t i o n  
o f  a c o n s t r u c t i o n  o f  t h i s  c l a s s ,  we o b t a i n  two q u a s i s t a t i c  s y s t e m s  o f  e q u a t i o n s  t o  d e t e r m i n e  
the critical loads for arbitrary corrosion wear loads given either by analytic expressions 
such as (5), or by generalization of experimental data: 
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a**~u @ an~v @ a~s~t, = O, a ~ u  @ a~sv @ a ~ w  = O, (6) 
aa~u + a ~ v  + a ~  = 0 (s = ~, 2). 

on t h e  b a s i s  o f  an e n e r g e t i c  method f o r  a monomial a p p r o x i m a t i o n  of  t h e  d i s p l a c e m e n t s  [2] 
w i t h i n  t h e  framework of  t h e  K i r c h h o f f - L o v e  h y p o t h e s e s .  Here s = 1 c o r r e s p o n d s  t o  t h e  case  
o f  a x i s y m m e t r i c  s t r a i n ,  w h i l e  s = 2 c o r r e s p o n d s  to  skew-symmet r i c .  These two sys t ems  a re  
p e r f e c t l y  i d e n t i c a l ;  t h e r e f o r e ,  a l l  t h e  r e a s o n i n g  pe r fo rmed  f o r  one o f  t he  sys t ems  w i l l  r e -  
main v a l i d  f o r  t h e  o t h e r  as  w e l l ,  i . e . ,  s p e a k i n g  of  sys t em ( 6 ) ,  we s h a l l  u n d e r s t a n d  e i t h e r  
of them. 

Taking account of the relationships of the engineering theory of reinforced shells [3] 
and unconnected thermoelasticity [5], the coefficients in system (6) take the form 

2 - -  d2 a n s =  an~ (t, a, T) d~ + ~ n 2 + 27c ~as= + 2~r n~ch~ + 2klrn4al,~, 

al~s = a21~ = al~s (t, a, T) = a21s (t, a, T) = ( - -  i )  8 (t + v) d~n 
2 

a13, = aa,  = a13~ (t, a, T) = aa~(t, a, T) = vd.~ - -  2 5 c d ~  --  

- -  2 , r  ( t + # ) d~n~alrn-- 2kfrd.~n'(yl~--  2~.lrdrnn'a~, 

( 1-v~) ~,~ 
a=2, = a~ (t, ~, 7) = n ~ + T *~ (I + a 2) + 2~d~ ~ + 

;) + 
az3,, = a~2~ = a23s (t, a, T) = a~2s(t, a, T) = ( - -  1) ~ n ( t  @ a s ( d ~  -~ n2)) ~- 

@ 2~cd~nc&~n@ 2~,c (l  --r) dmn(5,n@25rhc\ ' ( 1 - - ~  ) .naa.~--2yr ( ) . i - - ~ - ~  na~m, 

4 a ~  = a ~  (t, a, T) = I + a ~ (d~., + n~) ~ + 2~lcdma~ -[- 2~tcd~n.~afl~ @ 

2 "~ 4 ' o 

r] - 

% (i - ~) dl (i + 2~r -- ~r (i + v) (i + 2~c~c0~) d: -- 
E 

--  CCTT (t -~- ~;) (1 @ 2Cr ) (n 2 -- t). 

Here o x is the magnitude of the axial compressive stresses acting on the shell~ ~c = aTc/~T, 
m r = ~Tr/aT (aT, aTc, and ~Tr are the temperature coefficients of linear expansion of the 
sheath, the stringer, and the ribs, respectively). The remaining notation is presented in 
[3]. 

Taking the initial and boundary conditions into account in addition to (5), the problem 
of determining the critical axial compressive stresses in this formulation acquires the form 

an~u ~- an~v @ alasw = O, a2lsu -~ af~.~ v ~- ae3~w = O, 

aa~u @ a3~v @ a~sw = O, dP = / l d t  @ / f l ~  @ ] f iT ,  

P(t,  ao, T) = Pc,  P(t ,  a, To) = PT, P(to, a, T) = Pt  ( s =  t ,  2), 
(7) 

where Po, PT, and Pt are constants obtained experimentally [i]; a 0, T o , and t o are constants. 
System (7) can be solved numerically, where the method for its solution is selected as a function 
of the kind of corrosive destruction. The minimization in the wave-formation parameters rea- 
lizable in the solution of system (7) affords a possibility of determining the buckling criti- 
cal stresses. 

According to (5) and the assumptions introduced in [4], we now represent the constraints 
(1)-(3) with the influence of the aggressive medium taken into account, as 

2nrh (1 + C t l P  ) -k  khcbc 
(i  q- %p)2 

~>~ N, 
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2arh (t + alp ) -}- khcb c am~E 
(t+pp)(t_v~/(t+p~p)~)>/N,_ _ n:=O, m = t , 2  ..... 

(I+%P/ 

2~rh (1 + alp ) + khcb c ~mnE 
(1 -'- %p)~" (1 + p~p) (1 - v " / ( l  + p2e) 2) ~ N,  

n = 2 , 3  . . . . .  m - -  1,2 . . . . .  

where P = P(t, ~, T); al, 81, and ~2 are coefficients determined from the experimental data 
[ i ] .  

L e t  u s  i n t r o d u c e  t h e  n o t a t i o n  h = x i ,  k = x 2,  k i = x3 ,  h c = x 4 ,  h r = x s ,  t = x s ;  t h e n  
t h e  o p t i m i z a t i o n  p r o b l e m  f o r m u l a t e d  i s  w r i t t e n  a s  f o l l o w s :  

G* = (2~rLx 1 + kx2x~L + k~aX~nr ) p/x~-~ min,  

2 ~  (~ + %p (zs)) + Xx.,x~ ~ >i N, 
(t + %p (~%))" 

2~rx 1 (t -~ a lp  (x6)) -~ ~,x2x ~ omnE 

(i + %? (xo))" (i + p,/, (x)) (t - ,,,"/(i + p~e(xo)):~) 
~>N,  n = 0 ,  m = t , 2  . . . . .  

2~rx 1 (i -~ alp (x6)) -~ Zx2x ~ omnE 
,,>~ 

(t + %p (x,))'-' (~_ + pip (.~o)) (i - ,,,~/(i + ILv (xd)') 
~>N,  n = 2 , 3  . . . . .  r e = l , 2  . . . .  

( 8 )  

We consider atmospheric corrosion as the aggressive medium. The influence of the stress 
and temperature are of slight effect on changes in the rate of corrosive wear in atmospheric 
corrosion, in which connection the corrosive material destruction process is described as 

dP/dt = f1(t). 

From the condition for the existence of a nontrivial solution of system (6) we obtain 
an integral equation detaij = 0 (i, j = i, 2, 3), which we solve to find the expression to 
determine the critical axial-compression stresses 

a sa s--  a2 )a 2 c9a sa sa 2 
= - - ~I~:-,3~ (9) a13sa22s (Ym• ( II 22 12S 33s - 12 13. 23s 2 

d2m ( l / -  2Yco%n ) (ansa22 s -- a~2s) 

where a~ss = a3~a q- % (i -- v 2) (I + 27co%n ) d~ 2E ; acj~=aijs(xs) ( i ,  j = 1,  2 ,  3 ) .  

To be s p e c i f i c ,  we t a k e  t h e  f o l l o w i n g  law o f  a t m o s p h e r i c  c o r r o s i o n  v a r i a t i o n  [ 6 ] :  

P(x.) = D( t  + d exp (--KDxo)) -1. ( 1 0 )  

Hare D is the maximal value of the degree of destruction, K is a constant that characterizes 
the reaction to the degree of corrosive destruction at the site under consideration, and d 

is a corrosion constant. 

TABLE i 

0 ~timal design parameters - 

M, MN D, mm ~,, mm x2 ~ ~,  yr G, kg/yr 

i00 
i00 
i00 
300 
300 
300 
500 
500 
500 

1000 
1000 
i000 

3 
l 

2 
3 

4,8 
4,9 
5,0 
6,0 
6,3 
6,5 
7,i 
6,9 
6,6 
9,2 
8,8 
8,5 

18 
i8 
t8 
t9 
t9 
i9 
2i 
2i 
21 
24 
24 
24 

6 
6 
6 
8 
8 
8 

9 
t t  
t t  
t t  

x4, mill ms, 

8,0 7,0 
8,2 7,2 
8,5 7,3 
8,0 7,0 
8,2 7,2 
8,5 7,3 
8,O 7,O 
7,8 6,8 
7,5 6,5 
8,0 7,0 
7,6 6,6 
7,3 6,3 

7,02 
7,35 
7,68 
9,88 

t0,42 
t0,84 
13,0i 
i2,37 
ii,44 
23,63 
2t ,45 
i9,83 
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Solving the nonlinear mathematical programming problem (8) with (9) and (i0) taken into 
account by using the random search method described in [7], we obtain optimal values of the 
variable parameters. 

A numerical experiment is performed for a shell with r = 0.2 m, L = 0.2 m, E = 6.867"i0 l~ 
Pa, ~ = 0.35, I = i0 that is in a corrosive medium with the parameters K = 1649 i/(m.yr), 
d = 34 for a different loading level and degree of destruction. Optimal design parameters 
are presented in Table i; it is seen that the value of the maximal degree of destruction in- 
fluences neither the longevity of the compressed constant load of the shell nor the number 
of stringers and ribs but influences the thickness of the sheath and the geometric dimensions 
of the reinforcing set. As the axial compressive load increases from 1"108 to 3"10 s N, the 
number of stringers and ribs reinforcing the shell grows, while their geometric dimensions 
remain constant for each specific value of the maximal degree of destruction. The sheath 
thickness increases here as the compressive load grows. A uniform diminution in the sheath 
thickness, the stringer and rib width occurs as the maximal degree of destruction grows when 
a compressive load 5"108 N is achieved; here their quantitities, separately, as well as the 
longevity of the whole construction, remain constant. This is explained by the fact that, 
visibly, the growth of mechanical stresses in a metal changes its structure, weakens the ad- 
hesion force between its particles resulting in exfoliation of the metal being corroded upon 
the load reaching a specific value, and in diminution of the shell thickness and the stringer 
and rib widths as the maximal degree of destruction grows. As should have been expected, 
the optimal shell longevity is lowered as their loading increases. 

i. 

2. 

3. 

4. 

. 

6. 

7. 
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